These are the publications related to the projects on Digital Rocks Portal, as of Dec 21, 2021.

[1]      A.M. Alhammadi, A. AlRatrout, K. Singh, B. Bijeljic, M.J. Blunt, In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions, Sci Rep. 7 (2017) 1–9. https://doi.org/10.1038/s41598-017-10992-w.

[2]      F.O. Alpak, S. Berg, I. Zacharoudiou, Prediction of fluid topology and relative permeability in imbibition in sandstone rock by direct numerical simulation, Advances in Water Resources. 122 (2018) 49–59. https://doi.org/10.1016/j.advwatres.2018.09.001.

[3]      M. Andrew, Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles, Geological Society, London, Special Publications. 484 (2018) SP484.4. https://doi.org/10.1144/SP484.4.

[4]      M. Andrew, A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images, Comput Geosci. 22 (2018) 1503–1512. https://doi.org/10.1007/s10596-018-9768-y.

[5]      M. Andrew, B. Bijeljic, M.J. Blunt, Pore-scale imaging of geological carbon dioxide storage under in situ conditions, Geophysical Research Letters. 40 (2013) 3915–3918. https://doi.org/10.1002/grl.50771.

[6]      M. Andrew, B. Bijeljic, M.J. Blunt, Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates, International Journal of Greenhouse Gas Control. 22 (2014) 1–14. https://doi.org/10.1016/j.ijggc.2013.12.018.

[7]      I.S. Anjikar, S. Wales, L.E. Beckingham, Fused Filament Fabrication 3‐D Printing of Reactive Porous Media, Geophys. Res. Lett. 47 (2020). https://doi.org/10.1029/2020GL087665.

[8]      R.T. Armstrong, J.E. McClure, M.A. Berrill, M. Rücker, S. Schlüter, S. Berg, Beyond Darcy’s law: The role of phase topology and ganglion dynamics for two-fluid flow, Phys. Rev. E. 94 (2016) 043113. https://doi.org/10.1103/PhysRevE.94.043113.

[9]      W. Bartels, Pore scale processes in mixed-wet systems with application to low salinity waterflooding, UU Dept. of Earth Sciences, 2018.

[10]    W.-B. Bartels, M. Rücker, S. Berg, H. Mahani, A. Georgiadis, A. Fadili, N. Brussee, A. Coorn, H. van der Linde, C. Hinz, A. Jacob, C. Wagner, S. Henkel, F. Enzmann, A. Bonnin, M. Stampanoni, H. Ott, M. Blunt, S.M. Hassanizadeh, Fast X-Ray Micro-CT Study of the Impact of Brine Salinity on the Pore-Scale Fluid Distribution During Waterflooding, Petrophysics. 58 (2017) 36–47.

[11]    W. ‐B. Bartels, M. Rücker, M. Boone, T. Bultreys, H. Mahani, S. Berg, S.M. Hassanizadeh, V. Cnudde, Imaging Spontaneous Imbibition in Full Darcy‐Scale Samples at Pore‐Scale Resolution by Fast X‐ray Tomography, Water Resour. Res. 55 (2019) 7072–7085. https://doi.org/10.1029/2018WR024541.

[12]    J. Bensinger, L.E. Beckingham, CO2 storage in the Paluxy formation at the Kemper County CO2 storage complex: Pore network properties and simulated reactive permeability evolution, International Journal of Greenhouse Gas Control. 93 (2020) 102887. https://doi.org/10.1016/j.ijggc.2019.102887.

[13]    C.F. Berg, Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity, Transp Porous Med. 103 (2014) 381–400. https://doi.org/10.1007/s11242-014-0307-6.

[14]    C.F. Berg, R. Held, Fundamental Transport Property Relations in Porous Media Incorporating Detailed Pore Structure Description, Transp Porous Med. 112 (2016) 467–487. https://doi.org/10.1007/s11242-016-0661-7.

[15]    S. Berg, M. Rücker, H. Ott, A. Georgiadis, H. van der Linde, F. Enzmann, M. Kersten, R.T. Armstrong, S. de With, J. Becker, A. Wiegmann, Connected pathway relative permeability from pore-scale imaging of imbibition, Advances in Water Resources. 90 (2016) 24–35. https://doi.org/10.1016/j.advwatres.2016.01.010.

[16]    A. Bihani, H. Daigle, On the role of spatially correlated heterogeneity in determining mudrock sealing capacity for CO2 sequestration, Marine and Petroleum Geology. 106 (2019) 116–127. https://doi.org/10.1016/j.marpetgeo.2019.04.038.

[17]    B. Bijeljic, A. Raeini, P. Mostaghimi, M.J. Blunt, Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images, Phys. Rev. E. 87 (2013) 013011. https://doi.org/10.1103/PhysRevE.87.013011.

[18]    M.A. Boone, T. De Kock, T. Bultreys, G. De Schutter, P. Vontobel, L. Van Hoorebeke, V. Cnudde, 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging, Materials Characterization. 97 (2014) 150–160. https://doi.org/10.1016/j.matchar.2014.09.010.

[19]    A.H. Bouma, Methods for the study of sedimentary structures, 19690000. https://www.bcin.ca/bcin/detail.app?id=47340&wbdisable=true (accessed September 13, 2019).

[20]    K. Brown, Pore-scale observations of three-fluid-phase transport in porous media, MSc, Oregon State University, 2012. Pore-scale observations of three-fluid-phase transport in porous media.

[21]    T. Bultreys, M.A. Boone, M.N. Boone, T. De Schryver, B. Masschaele, L. Van Hoorebeke, V. Cnudde, Fast laboratory-based micro-computed tomography for pore-scale research: Illustrative experiments and perspectives on the future, Advances in Water Resources. 95 (2016) 341–351. https://doi.org/10.1016/j.advwatres.2015.05.012.

[22]    T. Bultreys, W. De Boever, L. Van Hoorebeke, V. Cnudde, A multi-scale, image-based pore network modeling approach to simulate two-phase flow in heterogeneous rocks, in: SCA 2015 Technical Papers, Society of Core Analysts (SCA), 2015. http://hdl.handle.net/1854/LU-6923699 (accessed September 13, 2019).

[23]    T. Bultreys, L.V. Hoorebeke, V. Cnudde, Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image-based, multiscale pore network model, Water Resources Research. 52 (2016) 6833–6850. https://doi.org/10.1002/2016WR018950.

[24]    T. Bultreys, J.V. Stappen, T.D. Kock, W.D. Boever, M.A. Boone, L.V. Hoorebeke, V. Cnudde, Investigating the relative permeability behavior of microporosity-rich carbonates and tight sandstones with multiscale pore network models, Journal of Geophysical Research: Solid Earth. 121 (2016) 7929–7945. https://doi.org/10.1002/2016JB013328.

[25]    T. Bultreys, L. Van Hoorebeke, V. Cnudde, Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks, Advances in Water Resources. 78 (2015) 36–49. https://doi.org/10.1016/j.advwatres.2015.02.003.

[26]    M.B. Cardenas, D.T. Slottke, R.A. Ketcham, J.M. Sharp, Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies, Geophysical Research Letters. 34 (2007). https://doi.org/10.1029/2007GL030545.

[27]    M.B. Cardenas, D.T. Slottke, R.A. Ketcham, J.M. Sharp, Effects of inertia and directionality on flow and transport in a rough asymmetric fracture, Journal of Geophysical Research: Solid Earth. 114 (2009). https://doi.org/10.1029/2009JB006336.

[28]    M. Carrel, M.A. Beltran, V.L. Morales, N. Derlon, E. Morgenroth, R. Kaufmann, M. Holzner, Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools, PLOS ONE. 12 (2017) e0180374. https://doi.org/10.1371/journal.pone.0180374.

[29]    B. Chen, J. Xiang, J.-P. Latham, R.R. Bakker, Grain-scale failure mechanism of porous sandstone: An experimental and numerical FDEM study of the Brazilian Tensile Strength test using CT-Scan microstructure, International Journal of Rock Mechanics and Mining Sciences. 132 (2020) 104348. https://doi.org/10.1016/j.ijrmms.2020.104348.

[30]    X. Chen, Experimental studies on CO2-brine-decane relative permeabilities in Berea sandstone with new steady-state and unsteady-state methods, Thesis, 2016. https://doi.org/10.15781/T24746X19.

[31]    X. Chen, D.N. Espinoza, Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate, Fuel. 214 (2018) 614–622. https://doi.org/10.1016/j.fuel.2017.11.065.

[32]    X. Chen, D.N. Espinoza, J.S. Luo, N. Tisato, P.B. Flemings, Pore-scale evidence of ion exclusion during methane hydrate growth and evolution of hydrate pore-habit in sandy sediments, Marine and Petroleum Geology. 117 (2020) 104340. https://doi.org/10.1016/j.marpetgeo.2020.104340.

[33]    X. Chen, S. Gao, A. Kianinejad, D.A. DiCarlo, Steady-state supercritical CO2 and brine relative permeability in Berea sandstone at different temperature and pressure conditions, Water Resources Research. 53 (2017) 6312–6321. https://doi.org/10.1002/2017WR020810.

[34]    X. Chen, A. Kianinejad, D.A. DiCarlo, Measurements of CO2-brine relative permeability in Berea sandstone using pressure taps and a long core, Greenhouse Gases: Science and Technology. 7 (2017) 370–382. https://doi.org/10.1002/ghg.1650.

[35]    X. Chen, R. Verma, D.N. Espinoza, M. Prodanović, Pore-Scale Determination of Gas Relative Permeability in Hydrate-Bearing Sediments Using X-Ray Computed Micro-Tomography and Lattice Boltzmann Method, Water Resources Research. 54 (2018) 600–608. https://doi.org/10.1002/2017WR021851.

[36]    Y. Chen, A.J. Valocchi, Q. Kang, H.S. Viswanathan, Inertial Effects During the Process of Supercritical CO 2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum‐Surface‐Force and Geometrical Wetting Models, Water Resour. Res. 55 (2019) 11144–11165. https://doi.org/10.1029/2019WR025746.

[37]    L. Chi, Z. Heidari, Directional-Permeability Assessment in Formations With Complex Pore Geometry With a New Nuclear-Magnetic- Resonance-Based Permeability Model, SPE Journal. 21 (2016) 1,436-1,449. https://doi.org/10.2118/179734-PA.

[38]    A.E. Cook, D. Goldberg, R.L. Kleinberg, Fracture-controlled gas hydrate systems in the northern Gulf of Mexico, Marine and Petroleum Geology. 25 (2008) 932–941. https://doi.org/10.1016/j.marpetgeo.2008.01.013.

[39]    E.H.G. Cooperdock, R.A. Ketcham, D.F. Stockli, Resolving the effects of 2-D versus 3-D grain measurements on apatite (U–Th) ∕ He age data and reproducibility, Geochronology. 1 (2019) 17–41. https://doi.org/10.5194/gchron-1-17-2019.

[40]    D. Crandall, G. Bromhal, Z.T. Karpyn, Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures, International Journal of Rock Mechanics and Mining Sciences. 47 (2010) 784–796. https://doi.org/10.1016/j.ijrmms.2010.03.015.

[41]    D. Crandall, M. Gill, J. Moore, B. Kutchko, Foamed Cement Analysis With Computed Tomography, in: American Society of Mechanical Engineers Digital Collection, 2014. https://doi.org/10.1115/FEDSM2014-21589.

[42]    Y. Da Wang, R. Armstrong, P. Mostaghimi, Super Resolution Convolutional Neural Network Models for Enhancing Resolution of Rock Micro-CT Images, Journal of Petroleum Science and Engineering. 182 (2019) 106261. https://doi.org/10.1016/j.petrol.2019.106261.

[43]    L.E. Dalton, D. Crandall, A. Goodman, Characterizing the Evolution of Trapped scCO 2 Curvature in Bentheimer and Nugget Sandstone Pore Geometry, Geofluids. 2020 (2020) 1–11. https://doi.org/10.1155/2020/3016595.

[44]    L.E. Dalton, K.A. Klise, S. Fuchs, D. Crandall, A. Goodman, Methods to measure contact angles in scCO2-brine-sandstone systems, Advances in Water Resources. 122 (2018) 278–290. https://doi.org/10.1016/j.advwatres.2018.10.020.

[45]    L.E. Dalton, D. Tapriyal, D. Crandall, A. Goodman, F. Shi, F. Haeri, Contact Angle Measurements Using Sessile Drop and Micro-CT Data from Six Sandstones, Transp Porous Med. 133 (2020) 71–83. https://doi.org/10.1007/s11242-020-01415-y.

[46]    W. De Boever, T. Bultreys, H. Derluyn, L. Van Hoorebeke, V. Cnudde, Comparison between traditional laboratory tests, permeability measurements and CT-based fluid flow modelling for cultural heritage applications, Science of The Total Environment. 554–555 (2016) 102–112. https://doi.org/10.1016/j.scitotenv.2016.02.195.

[47]    P.R. Di Palma, N. Guyennon, F. Heße, E. Romano, Porous media flux sensitivity to pore-scale geostatistics: A bottom-up approach, Advances in Water Resources. 102 (2017) 99–110. https://doi.org/10.1016/j.advwatres.2017.02.002.

[48]    T. Drombosky, S. Hier‐Majumder, Development of anisotropic contiguity in deforming partially molten aggregates: 1. Theory and fast multipole boundary elements method, Journal of Geophysical Research: Solid Earth. 120 (2015) 744–763. https://doi.org/10.1002/2014JB011068.

[49]    A.L. Dye, J.E. McClure, C.T. Miller, W.G. Gray, Description of non-Darcy flows in porous medium systems, Phys. Rev. E. 87 (2013) 033012. https://doi.org/10.1103/PhysRevE.87.033012.

[50]    S.A. Eckley, R.A. Ketcham, 4D Imaging of Mineral Dissolution in Porous Carbonado Diamond: Implications for Acid Digestion and XCT Measurement of Porosity and Material Properties, Front. Earth Sci. 7 (2019) 288. https://doi.org/10.3389/feart.2019.00288.

[51]    D.N. Espinoza, J.-M. Pereira, M. Vandamme, P. Dangla, S. Vidal-Gilbert, Desorption-induced shear failure of coal bed seams during gas depletion, International Journal of Coal Geology. 137 (2015) 142–151. https://doi.org/10.1016/j.coal.2014.10.016.

[52]    D.N. Espinoza, J.-M. Pereira, M. Vandamme, P. Dangla, S. Vidal-Gilbert, Stress Path of Coal Seams During Depletion: The Effect of Desorption on Coal Failure, in: American Rock Mechanics Association, 2015. https://www.onepetro.org/conference-paper/ARMA-2015-541 (accessed September 13, 2019).

[53]    D.N. Espinoza, M. Vandamme, J.-M. Pereira, P. Dangla, S. Vidal-Gilbert, Measurement and modeling of adsorptive–poromechanical properties of bituminous coal cores exposed to CO2: Adsorption, swelling strains, swelling stresses and impact on fracture permeability, International Journal of Coal Geology. 134–135 (2014) 80–95. https://doi.org/10.1016/j.coal.2014.09.010.

[54]    D.N. Espinoza, I. Shovkun, O. Makni, N. Lenoir, Natural and induced fractures in coal cores imaged through X-ray computed microtomography — Impact on desorption time, International Journal of Coal Geology. 154–155 (2016) 165–175. https://doi.org/10.1016/j.coal.2015.12.012.

[55]    M. Fan, J.E. McClure, R.T. Armstrong, M. Shabaninejad, L.E. Dalton, D. Crandall, C. Chen, Influence of Clay Wettability Alteration on Relative Permeability, Geophys. Res. Lett. 47 (2020). https://doi.org/10.1029/2020GL088545.

[56]    J.L. Finney, J.D. Bernal, Random packings and the structure of simple liquids. I. The geometry of random close packing, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 319 (1970) 479–493. https://doi.org/10.1098/rspa.1970.0189.

[57]    N. Francois, M. Saadatfar, R. Cruikshank, A. Sheppard, Geometrical Frustration in Amorphous and Partially Crystallized Packings of Spheres, Phys. Rev. Lett. 111 (2013) 148001. https://doi.org/10.1103/PhysRevLett.111.148001.

[58]    L.P. Frash, J.W. Carey, T. Ickes, Fracturing, Fluid Flowing, and X-Ray Imaging Through Anhydrite at Stressed Conditions, in: American Rock Mechanics Association, 2018. https://www.onepetro.org/conference-paper/ARMA-2018-999 (accessed September 13, 2019).

[59]    L.P. Frash, J.W. Carey, T. Ickes, H.S. Viswanathan, Caprock integrity susceptibility to permeable fracture creation, International Journal of Greenhouse Gas Control. 64 (2017) 60–72. https://doi.org/10.1016/j.ijggc.2017.06.010.

[60]    L.P. Frash, J.W. Carey, Z. Lei, E. Rougier, T. Ickes, H.S. Viswanathan, High-stress triaxial direct-shear fracturing of Utica shale and in situ X-ray microtomography with permeability measurement, Journal of Geophysical Research: Solid Earth. 121 (2016) 5493–5508. https://doi.org/10.1002/2016JB012850.

[61]    L.P. Frash, J.W. Carey, N.J. Welch, Scalable En Echelon Shear-Fracture Aperture-Roughness Mechanism: Theory, Validation, and Implications, Journal of Geophysical Research: Solid Earth. 124 (2019) 957–977. https://doi.org/10.1029/2018JB016525.

[62]    G. Garfi, Q. Lin, S. Berg, C.M. John, S. Krevor, Fluid surface coverage showing the controls of rock mineralogy on the wetting state, EarthArXiv, 2019. https://doi.org/10.31223/osf.io/e4tp2.

[63]    C. Garing, J.A. de Chalendar, M. Voltolini, J.B. Ajo-Franklin, S.M. Benson, Pore-scale capillary pressure analysis using multi-scale X-ray micromotography, Advances in Water Resources. 104 (2017) 223–241. https://doi.org/10.1016/j.advwatres.2017.04.006.

[64]    S. Ghanbarzadeh, M.A. Hesse, M. Prodanović, A level set method for materials with texturally equilibrated pores, Journal of Computational Physics. 297 (2015) 480–494. https://doi.org/10.1016/j.jcp.2015.05.023.

[65]    S. Ghanbarzadeh, M.A. Hesse, M. Prodanović, J.E. Gardner, Deformation-assisted fluid percolation in rock salt, Science. 350 (2015) 1069–1072. https://doi.org/10.1126/science.aac8747.

[66]    S. Ghanbarzadeh, M. Prodanović, M.A. Hesse, Percolation and Grain Boundary Wetting in Anisotropic Texturally Equilibrated Pore Networks, Phys. Rev. Lett. 113 (2014) 048001. https://doi.org/10.1103/PhysRevLett.113.048001.

[67]    E.J. Goldfarb, K. Ikeda, R.A. Ketcham, M. Prodanović, N. Tisato, Predictive digital rock physics without segmentation, Computers & Geosciences. 159 (2022) 105008. https://doi.org/10.1016/j.cageo.2021.105008.

[68]    E.J. Guiltinan, J.E. Santos, M.B. Cardenas, D.N. Espinoza, Q. Kang, Two‐Phase Fluid Flow Properties of Rough Fractures With Heterogeneous Wettability: Analysis With Lattice Boltzmann Simulations, Water Res. 57 (2021). https://doi.org/10.1029/2020WR027943.

[69]    E. Guiltinan, J.E. Santos, Q. Kang, Residual Saturation During Multiphase Displacement in Heterogeneous Fractures with Novel Deep Learning Prediction, in: Proceedings of the 8th Unconventional Resources Technology Conference, American Association of Petroleum Geologists, Online, 2020. https://doi.org/10.15530/urtec-2020-3048.

[70]    G. Han, T.-H. Kwon, J.Y. Lee, T.J. Kneafsey, Depressurization-Induced Fines Migration in Sediments Containing Methane Hydrate: X-Ray Computed Tomography Imaging Experiments, Journal of Geophysical Research: Solid Earth. (2018) 2539–2558. https://doi.org/10.1002/2017JB014988@10.1002/(ISSN)2169-9356.HYDRATE1.

[71]    M. Hanifpour, N. Francois, S.M. Vaez Allaei, T. Senden, M. Saadatfar, Mechanical Characterization of Partially Crystallized Sphere Packings, Phys. Rev. Lett. 113 (2014) 148001. https://doi.org/10.1103/PhysRevLett.113.148001.

[72]    A.L. Herring, V. Robins, A.P. Sheppard, Topological Persistence for Relating Microstructure and Capillary Fluid Trapping in Sandstones, Water Resources Research. 55 (2019) 555–573. https://doi.org/10.1029/2018WR022780.

[73]    S. Hier‐Majumder, T. Drombosky, Development of anisotropic contiguity in deforming partially molten aggregates: 2. Implications for the lithosphere-asthenosphere boundary, Journal of Geophysical Research: Solid Earth. 120 (2015) 764–777. https://doi.org/10.1002/2014JB011454.

[74]    F. Hofmann, E.H.G. Cooperdock, A.J. West, D. Hildebrandt, K. Strößner, K.A. Farley, Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite, Cosmogenic nuclide dating, 2021. https://doi.org/10.5194/gchron-2021-10.

[75]    R. Huang, A.L. Herring, A. Sheppard, Effect of Saturation and Image Resolution on Representative Elementary Volume and Topological Quantification: An Experimental Study on Bentheimer Sandstone Using Micro-CT, Transp Porous Med. 137 (2021) 489–518. https://doi.org/10.1007/s11242-021-01571-9.

[76]    S. Iglauer, A. Paluszny, T. Rahman, Y. Zhang, W. Wülling, M. Lebdev, Residual trapping of CO2 in an oil-filled, oil-wet sandstone core: results of three-phase pore scale imaging, Geophysical Research Letters. 0 (2019). https://doi.org/10.1029/2019GL083401.

[77]    D. Ivonin, T. Kalnin, E. Grachev, E. Shein, Quantitative Analysis of Pore Space Structure in Dry and Wet Soil by Integral Geometry Methods, Geosciences. 10 (2020) 365. https://doi.org/10.3390/geosciences10090365.

[78]    S.J. Jackson, Q. Lin, S. Krevor, Representative elementary volumes, hysteresis and heterogeneity in multiphase flow from the pore to continuum scale, Water Resour. Res. (2020). https://doi.org/10.1029/2019WR026396.

[79]    D.H. Kang, E. Yang, T.S. Yun, Stokes-Brinkman Flow Simulation Based on 3-D μ-CT Images of Porous Rock Using Grayscale Pore Voxel Permeability, Water Resources Research. 55 (2019) 4448–4464. https://doi.org/10.1029/2018WR024179.

[80]    Z.T. Karpyn, A.S. Grader, P.M. Halleck, Visualization of fluid occupancy in a rough fracture using micro-tomography, Journal of Colloid and Interface Science. 307 (2007) 181–187. https://doi.org/10.1016/j.jcis.2006.10.082.

[81]    Z.T. Karpyn, M. Piri, Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. I: Data conditioning and model description, Phys. Rev. E. 76 (2007) 016315. https://doi.org/10.1103/PhysRevE.76.016315.

[82]    Z.T. Karpyn, M. Piri, G. Singh, Experimental investigation of trapped oil clusters in a water-wet bead pack using X-ray microtomography, Water Resources Research. 46 (2010). https://doi.org/10.1029/2008WR007539.

[83]    A. Kazak, S. Chugunov, V. Nachev, M. Spasennykh, A. Chashkov, E. Pichkur, M. Presniakov, A. Vasiliev, Integration of Large-Area SEM Imaging and Automated Mineralogy-Petrography Data for Justified Decision on Nano-Scale Pore-Space Characterization Sites, as a Part of Multiscale Digital Rock Modeling Workflow, (2017). http://archives.datapages.com/data/urtec/2017/2697437.htm (accessed September 13, 2019).

[84]    R.A. Ketcham, A.S. Mote, Accurate Measurement of Small Features in X-Ray CT Data Volumes, Demonstrated Using Gold Grains, Journal of Geophysical Research: Solid Earth. 124 (2019) 3508–3529. https://doi.org/10.1029/2018JB017083.

[85]    R.A. Ketcham, D.T. Slottke, J.M. Sharp, Three-dimensional measurement of fractures in heterogeneous materials using high-resolution X-ray computed tomography, Geosphere. 6 (2010) 499–514. https://doi.org/10.1130/GES00552.1.

[86]    H.J. Khan, D. DiCarlo, M. Prodanović, Replicating carbonaceous vug in synthetic porous media, MethodsX. 5 (2018) 808–811. https://doi.org/10.1016/j.mex.2018.07.018.

[87]    H.J. Khan, A. Mehmani, M. Prodanović, D. DiCarlo, D.J. Khan, Capillary rise in vuggy media, Advances in Water Resources. 143 (2020) 103671. https://doi.org/10.1016/j.advwatres.2020.103671.

[88]    H.J. Khan, M. Prodanovic, D.A. DiCarlo, The Effect of Vuggy Porosity on Straining in Porous Media, SPE Journal. 24 (2019) 1,164-1,178. https://doi.org/10.2118/194201-PA.

[89]    H.J. Khan, Improved permeability estimation of formation damage through imaged core flooding experiments, Thesis, 2016. https://doi.org/10.15781/T28G8FP55.

[90]    H. Khan, M. Mirabolghasemi, H. Yang, M. Prodanovic, D. DiCarlo, M. Balhoff, K. Gray, Comparative Study of Formation Damage due to Straining and Surface Deposition in Porous Media, in: Society of Petroleum Engineers, 2016. https://doi.org/10.2118/178930-MS.

[91]    K.A. Klise, D. Moriarty, H. Yoon, Z. Karpyn, Automated contact angle estimation for three-dimensional X-ray microtomography data, Advances in Water Resources. 95 (2016) 152–160. https://doi.org/10.1016/j.advwatres.2015.11.006.

[92]    S.V. Korneev, X. Yang, J.M. Zachara, T.D. Scheibe, I. Battiato, Downscaling-Based Segmentation for Unresolved Images of Highly Heterogeneous Granular Porous Samples, Water Resources Research. 54 (2018) 2871–2890. https://doi.org/10.1002/2018WR022886.

[93]    B. Kutchko, D. Crandall, M. Gill, D. McIntyre, R. Spaulding, B. Strazisar, E. Rosenbaum, I. Haljasmaa, G. Benge, E. Cunningham, others, Computed Tomography and Statistical Analysis of Bubble Size Distributions in Atmospheric-Generated Foamed Cement, Pittsburgh: DOE-NETL Internal Publication. (2013).

[94]    B. Kutchko, D. Crandall, J. Moore, M. Gill, I. Haljasmaa, R. Spaulding, W. Harbert, G. Benge, G. DeBruijn, J.M. Shine, Assessment of Foamed Cement Used in Deep Offshore Wells, in: Society of Petroleum Engineers, 2014. https://doi.org/10.2118/170298-MS.

[95]    C.J. Landry, Z.T. Karpyn, M. Piri, Pore-scale analysis of trapped immiscible fluid structures and fluid interfacial areas in oil-wet and water-wet bead packs, Geofluids. 11 (2011) 209–227. https://doi.org/10.1111/j.1468-8123.2011.00333.x.

[96]    C.J. Landry, B.S. Hart, M. Prodanović, Comparison of Wireline Log and SEM Image-Based Measurements of Porosity in Overburden Shales, in: Proceedings of the 8th Unconventional Resources Technology Conference, American Association of Petroleum Geologists, Online, 2020. https://doi.org/10.15530/urtec-2020-3141.

[97]    Q. Lin, B. Bijeljic, S. Berg, R. Pini, M.J. Blunt, S. Krevor, Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone, Phys. Rev. E. 99 (2019) 063105. https://doi.org/10.1103/PhysRevE.99.063105.

[98]    Q. Lin, B. Bijeljic, S. Foroughi, S. Berg, M.J. Blunt, Pore-scale imaging of displacement patterns in an altered-wettability carbonate, Chemical Engineering Science. 235 (2021) 116464. https://doi.org/10.1016/j.ces.2021.116464.

[99]    Q. Lin, B. Bijeljic, R. Pini, M.J. Blunt, S. Krevor, Imaging and Measurement of Pore-Scale Interfacial Curvature to Determine Capillary Pressure Simultaneously With Relative Permeability, Water Resources Research. 54 (2018) 7046–7060. https://doi.org/10.1029/2018WR023214.

[100]  Q. Lin, B. Bijeljic, R. Pini, M.J. Blunt, S. Krevor, Imaging and Measurement of Pore‐Scale Interfacial Curvature to Determine Capillary Pressure Simultaneously With Relative Permeability, Water Resour. Res. 54 (2018) 7046–7060. https://doi.org/10.1029/2018WR023214.

[101]  Q. Lin, B. Bijeljic, A.Q. Raeini, H. Rieke, M.J. Blunt, Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone, Geophys Res Lett. (2021). https://doi.org/10.1029/2021GL093604.

[102]  E. Lucas-Oliveira, A.G. Araujo-Ferreira, W.A. Trevizan, B.C.C. dos Santos, T.J. Bonagamba, Sandstone surface relaxivity determined by NMR T2 distribution and digital rock simulation for permeability evaluation, Journal of Petroleum Science and Engineering. 193 (2020) 107400. https://doi.org/10.1016/j.petrol.2020.107400.

[103]  A. Mascini, M. Boone, S. Van Offenwert, S. Wang, V. Cnudde, T. Bultreys, Fluid Invasion Dynamics in Porous Media With Complex Wettability and Connectivity, Geophys Res Lett. 48 (2021). https://doi.org/10.1029/2021GL095185.

[104]  E.F. McBride, L.S. Land, T.N. Diggs, L.E. Mack, Petrography, Stable Isotope Geochemistry and Diagenesis of Miocene Sandstones, Vermilion Block 31, Offshore Louisiana, 38 (1988). http://archives.datapages.com/data/gcags/data/038/038001/0513.htm (accessed March 12, 2020).

[105]  J.E. McClure, M.A. Berrill, W.G. Gray, C.T. Miller, Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems, Phys. Rev. E. 94 (2016) 033102. https://doi.org/10.1103/PhysRevE.94.033102.

[106]  J.E. McClure, A.L. Dye, C.T. Miller, W.G. Gray, On the consistency of scale among experiments, theory, and simulation, Hydrology and Earth System Sciences. 21 (2017) 1063–1076. https://doi.org/10.5194/hess-21-1063-2017.

[107]  J.E. McClure, Z. Li, M. Berrill, T. Ramstad, The LBPM software package for simulating multiphase flow on digital images of porous rocks, Comput Geosci. 25 (2021) 871–895. https://doi.org/10.1007/s10596-020-10028-9.

[108]  T.A. Meckel, Digital Rendering of Sedimentary-Relief Peels: Implications for Clastic Facies Characterization and Fluid FlowDigital Rendering of Sedimentary Relief Peels, Journal of Sedimentary Research. 83 (2013) 495–501. https://doi.org/10.2110/jsr.2013.43.

[109]  A. Mehmani, Investigation of the petrophysical properties of unconventional rocks using multiscale network modeling, Thesis, 2015. https://doi.org/10.15781/T2NG62.

[110]  Y. Mehmani, H.A. Tchelepi, Minimum requirements for predictive pore-network modeling of solute transport in micromodels, Advances in Water Resources. 108 (2017) 83–98. https://doi.org/10.1016/j.advwatres.2017.07.014.

[111]  A. Mehmani*, M. Prodanovi?, K. Milliken, A Quantitative Pore-Scale Investigation on the Paragenesis of Wilcox Tight Gas Sandstone, in: Unconventional Resources Technology Conference, San Antonio, Texas, 20-22 July 2015, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2015: pp. 2511–2517. https://doi.org/10.15530/urtec-2015-2147717.

[112]  D.E. Meisenheimer, D. Wildenschild, Predicting the Effect of Relaxation on Interfacial Area Development in Multiphase Flow, Water Res. 57 (2021). https://doi.org/10.1029/2020WR028770.

[113]  A.H. Menefee, N.J. Welch, L.P. Frash, W. Hicks, J.W. Carey, B.R. Ellis, Rapid Mineral Precipitation During Shear Fracturing of Carbonate‐Rich Shales, J. Geophys. Res. Solid Earth. 125 (2020). https://doi.org/10.1029/2019JB018864.

[114]  D.W. Meyer, P.B. Flemings, D. DiCarlo, K. You, S.C. Phillips, T.J. Kneafsey, Experimental Investigation of Gas Flow and Hydrate Formation Within the Hydrate Stability Zone, Journal of Geophysical Research: Solid Earth. (2018) 5350–5371. https://doi.org/10.1029/2018JB015748@10.1002/(ISSN)2169-9356.HYDRATE1.

[115]  K.L. Milliken, R.M. Reed, Multiple causes of diagenetic fabric anisotropy in weakly consolidated mud, Nankai accretionary prism, IODP Expedition 316, Journal of Structural Geology. 32 (2010) 1887–1898. https://doi.org/10.1016/j.jsg.2010.03.008.

[116]  P. Mohammadmoradi, A. Kantzas, Petrophysical characterization of porous media starting from micro-tomographic images, Advances in Water Resources. 94 (2016) 200–216. https://doi.org/10.1016/j.advwatres.2016.05.009.

[117]  P. Mohammadmoradi, A. Kantzas, Pore Scale Investigation of Wettability Effect on Waterflood Performance, in: Society of Petroleum Engineers, 2016. https://doi.org/10.2118/181309-MS.

[118]  P. Mohammadmoradi, A. Kantzas, Pore-scale permeability calculation using CFD and DSMC techniques, Journal of Petroleum Science and Engineering. 146 (2016) 515–525. https://doi.org/10.1016/j.petrol.2016.07.010.

[119]  P. Mohammadmoradi, A. Kantzas, DyMAS: A Direct Multi-Scale Pore-Level Simulation Approach, in: Society of Petroleum Engineers, 2017. https://doi.org/10.2118/185720-MS.

[120]  I.L. Molnar, J.I. Gerhard, C.S. Willson, D.M. O’Carroll, The impact of immobile zones on the transport and retention of nanoparticles in porous media, Water Resources Research. 51 (2015) 8973–8994. https://doi.org/10.1002/2015WR017167.

[121]  I.L. Molnar, P.C. Sanematsu, J.I. Gerhard, C.S. Willson, D.M. O’Carroll, Quantified Pore-Scale Nanoparticle Transport in Porous Media and the Implications for Colloid Filtration Theory, Langmuir. 32 (2016) 7841–7853. https://doi.org/10.1021/acs.langmuir.6b01233.

[122]  C. Moon, S.A. Mitchell, J.E. Heath, M. Andrew, Statistical Inference Over Persistent Homology Predicts Fluid Flow in Porous Media, Water Resour. Res. 55 (2019) 9592–9603. https://doi.org/10.1029/2019WR025171.

[123]  B.P. Muljadi, M.J. Blunt, A.Q. Raeini, B. Bijeljic, The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation, Advances in Water Resources. 95 (2016) 329–340. https://doi.org/10.1016/j.advwatres.2015.05.019.

[124]  R.F. Neumann, M. Barsi-Andreeta, E. Lucas-Oliveira, H. Barbalho, W.A. Trevizan, T.J. Bonagamba, M.B. Steiner, High accuracy capillary network representation in digital rock reveals permeability scaling functions, Sci Rep. 11 (2021) 11370. https://doi.org/10.1038/s41598-021-90090-0.

[125]  M. Newville, Larch: An Analysis Package for XAFS and Related Spectroscopies, J. Phys.: Conf. Ser. 430 (2013) 012007. https://doi.org/10.1088/1742-6596/430/1/012007.

[126]  Y. Niu, Y.D. Wang, P. Mostaghimi, P. Swietojanski, R.T. Armstrong, An Innovative Application of Generative Adversarial Networks for Physically Accurate Rock Images With an Unprecedented Field of View, Geophys. Res. Lett. 47 (2020). https://doi.org/10.1029/2020GL089029.

[127]  M. Nole, H. Daigle, K.L. Milliken, M. Prodanović, A method for estimating microporosity of fine-grained sediments and sedimentary rocks via scanning electron microscope image analysis, Sedimentology. 63 (2016) 1507–1521. https://doi.org/10.1111/sed.12271.

[128]  A. Patmonoaji, Y. Hu, M. Nasir, C. Zhang, T. Suekane, Effects of Dissolution Fingering on Mass Transfer Rate in Three‐Dimensional Porous Media, Water Res. 57 (2021). https://doi.org/10.1029/2020WR029353.

[129]  J.P. Pereira Nunes, B. Bijeljic, M.J. Blunt, Pore-space structure and average dissolution rates: A simulation study: PORE-SPACE STRUCTURE AND AVERAGE DISSOLUTION RATES, Water Resour. Res. 52 (2016) 7198–7212. https://doi.org/10.1002/2016WR019313.

[130]  T. Phillips, T. Bultreys, K. Bisdom, N. Kampman, S. Offenwert, A. Mascini, V. Cnudde, A. Busch, A Systematic Investigation Into the Control of Roughness on the Flow Properties of 3D‐Printed Fractures, Water Res. 57 (2021). https://doi.org/10.1029/2020WR028671.

[131]  M. Piri, Z.T. Karpyn, Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. II: Results, Phys. Rev. E. 76 (2007) 016316. https://doi.org/10.1103/PhysRevE.76.016316.

[132]  M. Prodanović, S.L. Bryant, J.S. Davis, Numerical Simulation of Diagenetic Alteration and Its Effect on Residual Gas in Tight Gas Sandstones, Transp Porous Med. 96 (2013) 39–62. https://doi.org/10.1007/s11242-012-0072-3.

[133]  M. Prodanovic, S.L. Bryant, Z.T. Karpyn, Investigating Matrix/Fracture Transfer via a Level Set Method for Drainage and Imbibition, SPE Journal. 15 (2010) 125–136. https://doi.org/10.2118/116110-PA.

[134]  F. Qin, L.E. Beckingham, Impact of image resolution on quantification of mineral abundances and accessible surface areas, Chemical Geology. 523 (2019) 31–41. https://doi.org/10.1016/j.chemgeo.2019.06.004.

[135]  H.L. Ramandi, P. Mostaghimi, R.T. Armstrong, M. Saadatfar, W.V. Pinczewski, Porosity and permeability characterization of coal: a micro-computed tomography study, International Journal of Coal Geology. 154–155 (2016) 57–68. https://doi.org/10.1016/j.coal.2015.10.001.

[136]  M.J. Ramos, D.N. Espinoza, C. Torres-Verdín, K.T. Spikes, S.E. Laubach, Stress-Dependent Dynamic-Static Transforms of Anisotropic Mancos Shale, in: American Rock Mechanics Association, 2017. https://www.onepetro.org/conference-paper/ARMA-2017-0182 (accessed September 13, 2019).

[137]  M.J. Ramos, D.N. Espinoza, C. Torres-Verdín, T. Grover, Use of S-wave anisotropy to quantify the onset of stress-induced microfracturingShear anisotropy and microfracturing, Geophysics. 82 (2017) MR201–MR212. https://doi.org/10.1190/geo2016-0579.1.

[138]  T. Ramstad, N. Idowu, C. Nardi, P.-E. Øren, Relative Permeability Calculations from Two-Phase Flow Simulations Directly on Digital Images of Porous Rocks, Transp Porous Med. 94 (2012) 487–504. https://doi.org/10.1007/s11242-011-9877-8.

[139]  M. Rücker, W.-B. Bartels, G. Garfi, M. Shams, T. Bultreys, M. Boone, S. Pieterse, G.C. Maitland, S. Krevor, V. Cnudde, H. Mahani, S. Berg, A. Georgiadis, P.F. Luckham, Relationship between wetting and capillary pressure in a crude oil/brine/rock system: From nano-scale to core-scale, Journal of Colloid and Interface Science. 562 (2020) 159–169. https://doi.org/10.1016/j.jcis.2019.11.086.

[140]  M. Rücker, W. ‐B. Bartels, K. Singh, N. Brussee, A. Coorn, H.A. Linde, A. Bonnin, H. Ott, S.M. Hassanizadeh, M.J. Blunt, H. Mahani, A. Georgiadis, S. Berg, The Effect of Mixed Wettability on Pore‐Scale Flow Regimes Based on a Flooding Experiment in Ketton Limestone, Geophys. Res. Lett. 46 (2019) 3225–3234. https://doi.org/10.1029/2018GL081784.

[141]  M. Rücker, S. Berg, R.T. Armstrong, A. Georgiadis, H. Ott, A. Schwing, R. Neiteler, N. Brussee, A. Makurat, L. Leu, M. Wolf, F. Khan, F. Enzmann, M. Kersten, From connected pathway flow to ganglion dynamics, Geophysical Research Letters. 42 (2015) 3888–3894. https://doi.org/10.1002/2015GL064007.

[142]  M. Rüecker, Wettability and wettability alteration at the pore- and nano- scales, (2018). http://spiral.imperial.ac.uk/handle/10044/1/66307 (accessed September 13, 2019).

[143]  C. Ruppel, R. Boswell, E. Jones, Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview, Marine and Petroleum Geology. 25 (2008) 819–829. https://doi.org/10.1016/j.marpetgeo.2008.02.007.

[144]  V. Rutka, A. Wiegmann, Explicit jump immersed interface method for virtual material design of the effective elastic moduli of composite materials, Numer Algor. 43 (2006) 309–330. https://doi.org/10.1007/s11075-007-9063-9.

[145]  E. Santos, J. Andres, Lattice-Boltzmann modeling of multiphase flow through rough heterogeneously wet fractures, Thesis, 2018. https://doi.org/10.15781/T25X25Z28.

[146]  J.E. Santos, M. Prodanovi?, C.J. Landry, H. Jo, Determining the Impact of Mineralogy Composition for Multiphase Flow through Hydraulically Induced Fractures, in: Unconventional Resources Technology Conference, Houston, Texas, 23-25 July 2018, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2018: pp. 2542–2556. https://doi.org/10.15530/urtec-2018-2902986.

[147]  J.E. Santos, D. Xu, H. Jo, C.J. Landry, M. Prodanović, M.J. Pyrcz, PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media, Advances in Water Resources. 138 (2020) 103539. https://doi.org/10.1016/j.advwatres.2020.103539.

[148]  H. Saur, P. Moonen, C. Aubourg, Grain Fabric Heterogeneity in Strained Shales: Insights From XCT Measurements, J Geophys Res Solid Earth. 126 (2021). https://doi.org/10.1029/2021JB022025.

[149]  K. Sawayama, T. Ishibashi, F. Jiang, T. Tsuji, Y. Fujimitsu, Relating Hydraulic–Electrical–Elastic Properties of Natural Rock Fractures at Elevated Stress and Associated Transient Changes of Fracture Flow, Rock Mech Rock Eng. 54 (2021) 2145–2164. https://doi.org/10.1007/s00603-021-02391-5.

[150]  A. Scanziani, K. Singh, T. Bultreys, B. Bijeljic, M.J. Blunt, In Situ Pore-Scale Visualization of Immiscible Three-Phase Flow at High Pressure and Temperature, in: 2018. https://doi.org/10.3997/2214-4609.201800777.

[151]  A. Scanziani, A. Alhosani, Q. Lin, C. Spurin, G. Garfi, M.J. Blunt, B. Bijeljic, In Situ Characterization of Three‐Phase Flow in Mixed‐Wet Porous Media Using Synchrotron Imaging, Water Resour. Res. 56 (2020). https://doi.org/10.1029/2020WR027873.

[152]  A. Scanziani, Q. Lin, A. Alhosani, M.J. Blunt, B. Bijeljic, Dynamics of fluid displacement in mixed-wet porous media, Proc. R. Soc. A. 476 (2020) 20200040. https://doi.org/10.1098/rspa.2020.0040.

[153]  A. Scanziani, K. Singh, M.J. Blunt, A. Guadagnini, Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media, Journal of Colloid and Interface Science. 496 (2017) 51–59. https://doi.org/10.1016/j.jcis.2017.02.005.

[154]  A. Scanziani, K. Singh, T. Bultreys, B. Bijeljic, M.J. Blunt, In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock, Advances in Water Resources. 121 (2018) 446–455. https://doi.org/10.1016/j.advwatres.2018.09.010.

[155]  G. Scott, Multiscale Image Based Pore Space Characterisation and Modelling of North Sea Sandstone Reservoirs, University of Aberdeen, 2020.

[156]  G. Scott, K. Wu, Y. Zhou, Multi-scale Image-Based Pore Space Characterisation and Pore Network Generation: Case Study of a North Sea Sandstone Reservoir, Transp Porous Med. 129 (2019) 855–884. https://doi.org/10.1007/s11242-019-01309-8.

[157]  I. Shikhov, C.H. Arns, Evaluation of Capillary Pressure Methods via Digital Rock Simulations, Transp Porous Med. 107 (2015) 623–640. https://doi.org/10.1007/s11242-015-0459-z.

[158]  I. Shikhov, M.N. d’Eurydice, J.-Y. Arns, C.H. Arns, An Experimental and Numerical Study of Relative Permeability Estimates Using Spatially Resolved $$T_1$$-z NMR, Transp Porous Med. 118 (2017) 225–250. https://doi.org/10.1007/s11242-017-0855-7.

[159]  A. Singh, K. Regenauer‐Lieb, S.D.C. Walsh, R.T. Armstrong, J.J.M. Griethuysen, P. Mostaghimi, On Representative Elementary Volumes of Grayscale Micro‐CT Images of Porous Media, Geophys. Res. Lett. 47 (2020). https://doi.org/10.1029/2020GL088594.

[160]  M. Souzy, H. Lhuissier, Y. Méheust, T. Le Borgne, B. Metzger, Velocity distributions, dispersion and stretching in three-dimensional porous media, J. Fluid Mech. 891 (2020) A16. https://doi.org/10.1017/jfm.2020.113.

[161]  K. Spokas, Y. Fang, J.P. Fitts, C.A. Peters, D. Elsworth, Collapse of Reacted Fracture Surface Decreases Permeability and Frictional Strength, J. Geophys. Res. Solid Earth. 124 (2019) 12799–12811. https://doi.org/10.1029/2019JB017805.

[162]  C. Spurin, T. Bultreys, B. Bijeljic, M.J. Blunt, S. Krevor, Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock, Phys. Rev. E. 100 (2019) 043103. https://doi.org/10.1103/PhysRevE.100.043103.

[163]  C. Spurin, T. Bultreys, B. Bijeljic, M.J. Blunt, S. Krevor, Mechanisms controlling fluid breakup and reconnection during two-phase flow in porous media, Phys. Rev. E. 100 (2019) 043115. https://doi.org/10.1103/PhysRevE.100.043115.

[164]  S.R. Sutton, A. Lanzirotti, M. Newville, M.L. Rivers, P. Eng, L. Lefticariu, Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source, J. Environ. Qual. 46 (2017) 1158–1165. https://doi.org/10.2134/jeq2016.10.0401.

[165]  A. Suzuki, J.M. Minto, N. Watanabe, K. Li, R.N. Horne, Contributions of 3D Printed Fracture Networks to Development of Flow and Transport Models, Transp Porous Med. 129 (2019) 485–500. https://doi.org/10.1007/s11242-018-1154-7.

[166]  A. Suzuki, N. Watanabe, K. Li, R.N. Horne, Fracture network created by 3-D printer and its validation using CT images: 3-D PRINTED FRACTURE NETWORK, Water Resour. Res. 53 (2017) 6330–6339. https://doi.org/10.1002/2017WR021032.

[167]  A. Suzuki, N. Watanabe, K. Li, R.N. Horne, Fracture network created by 3-D printer and its validation using CT images: 3-D PRINTED FRACTURE NETWORK, Water Resour. Res. 53 (2017) 6330–6339. https://doi.org/10.1002/2017WR021032.

[168]  A. Tokan-Lawal, M. Prodanović, C.J. Landry, P. Eichhubl, Influence of Numerical Cementation on Multiphase Displacement in Rough Fractures, Transp Porous Med. 116 (2017) 275–293. https://doi.org/10.1007/s11242-016-0773-0.

[169]  A. Tokan-Lawal*, C. j. Landry, P. Eichhubl, M. Prodanovic, Understanding Tortuosity and Permeability variations in Naturally Fractured Reservoirs: Niobrara Formation, in: Unconventional Resources Technology Conference, Denver, Colorado, 25-27 August 2014, Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2014: pp. 369–381. https://doi.org/10.15530/urtec-2014-1922870.

[170]  A. Tokan‐Lawal, M. Prodanović, P. Eichhubl, Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling, Journal of Geophysical Research: Solid Earth. 120 (2015) 5453–5466. https://doi.org/10.1002/2015JB012045.

[171]  S. Van Offenwert, T. Bultreys, A. Mascini, M. Boone, V. Cnudde, Pore-scale visualization and quantification of saturated solute transport using fast micro-computed tomography, in: InterPore2019 Valencia : Book of Abstracts, International Society for Porous Media (Interpore), 2019. http://hdl.handle.net/1854/LU-8615977 (accessed September 13, 2019).

[172]  S. Van Offenwert, V. Cnudde, T. Bultreys, Pore‐Scale Visualization and Quantification of Transient Solute Transport Using Fast Microcomputed Tomography, Water Resour. Res. 55 (2019) 9279–9291. https://doi.org/10.1029/2019WR025880.

[173]  R.A. Victor, M. Mirabolghasemi, S.L. Bryant, M. Prodanović, Minimum divergence viscous flow simulation through finite difference and regularization techniques, Advances in Water Resources. 95 (2016) 29–45. https://doi.org/10.1016/j.advwatres.2016.02.002.

[174]  R.A. Victor, M. Prodanović, C. Torres‐Verdín, Monte Carlo Approach for Estimating Density and Atomic Number From Dual-Energy Computed Tomography Images of Carbonate Rocks, Journal of Geophysical Research: Solid Earth. 122 (2017) 9804–9824. https://doi.org/10.1002/2017JB014408.

[175]  M. Voltolini, N. Taş, S. Wang, E.L. Brodie, J.B. Ajo-Franklin, Quantitative characterization of soil micro-aggregates: New opportunities from sub-micron resolution synchrotron X-ray microtomography, Geoderma. 305 (2017) 382–393. https://doi.org/10.1016/j.geoderma.2017.06.005.

[176]  N. Wang, Y. Liu, L. Cha, M. Prodanovic, M. Balhoff, Microfluidic and Numerical Investigation of Trapped Oil Mobilization with Hydrophilic Magnetic Nanoparticles, in: Day 3 Wed, October 28, 2020, SPE, Virtual, 2020: p. D031S029R008. https://doi.org/10.2118/201365-MS.

[177]  N. Wang, Y. Liu, L. Cha, M.T. Balhoff, M. Prodanovic, Experimental Investigation of Trapped Oil Mobilization with Ferrofluid, SPE Journal. (2021) 1–18. https://doi.org/10.2118/201365-PA.

[178]  Y.D. Wang, R.T. Armstrong, P. Mostaghimi, Enhancing Resolution of Digital Rock Images with Super Resolution Convolutional Neural Networks, Journal of Petroleum Science and Engineering. 182 (2019) 106261. https://doi.org/10.1016/j.petrol.2019.106261.

[179]  Y.D. Wang, R.T. Armstrong, P. Mostaghimi, Enhancing Resolution of Digital Rock Images with Super Resolution Convolutional Neural Networks, Journal of Petroleum Science and Engineering. 182 (2019) 106261. https://doi.org/10.1016/j.petrol.2019.106261.

[180]  Y.D. Wang, R.T. Armstrong, P. Mostaghimi, Boosting Resolution and Recovering Texture of 2D and 3D Micro‐CT Images with Deep Learning, Water Resour. Res. 56 (2020). https://doi.org/10.1029/2019WR026052.

[181]  W.J. Winters, B. Dugan, T.S. Collett, Physical properties of sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico gas hydrate drilling program, Marine and Petroleum Geology. 25 (2008) 896–905. https://doi.org/10.1016/j.marpetgeo.2008.01.018.

[182]  B.E. Wortham, I.P. Montañez, D.J. Rowland, M. Lerche, A. Browning, Mapping Fluid-Filled Inclusions in Stalagmites Using Coupled X-Ray and Neutron Computed Tomography: Potential as a Water Excess Proxy, Geochemistry, Geophysics, Geosystems. 20 (2019) 2647–2656. https://doi.org/10.1029/2018GC008140.

[183]  R. Xu, Pore Scale Study of Gas Sorption and Transport in Shale Nanopore Systems, The University of Texas at Austin, 2019.

[184]  R. Xu, M. Prodanović, C. Landry, Pore‐Scale Study of Water Adsorption and Subsequent Methane Transport in Clay in the Presence of Wettability Heterogeneity, Water Resour. Res. 56 (2020). https://doi.org/10.1029/2020WR027568.

[185]  R. Xu, Y. Yin, C. Landry, M. Prodanovic, Pore Scale Study of Methane Advection and Diffusion in Image-Based 3-D Reconstructions of Shale with Consideration of Bound Water, in: Unconventional Resources Technology Conference, 2020. https://doi.org/10.15530/urtec-2020-3254.

[186]  B. Yang, H. Wang, B. Wang, Z. Shen, Y. Zheng, Z. Jia, W. Yan, Digital quantification of fracture in full-scale rock using micro-CT images: A fracturing experiment with N2 and CO2, Journal of Petroleum Science and Engineering. 196 (2021) 107682. https://doi.org/10.1016/j.petrol.2020.107682.

[187]  X. Yang, Y. Mehmani, W.A. Perkins, A. Pasquali, M. Schönherr, K. Kim, M. Perego, M.L. Parks, N. Trask, M.T. Balhoff, M.C. Richmond, M. Geier, M. Krafczyk, L.-S. Luo, A.M. Tartakovsky, T.D. Scheibe, Intercomparison of 3D pore-scale flow and solute transport simulation methods, Advances in Water Resources. 95 (2016) 176–189. https://doi.org/10.1016/j.advwatres.2015.09.015.

[188]  X. Yang, T.D. Scheibe, M.C. Richmond, W.A. Perkins, S.J. Vogt, S.L. Codd, J.D. Seymour, M.I. McKinley, Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations, Advances in Water Resources. 54 (2013) 228–241. https://doi.org/10.1016/j.advwatres.2013.01.009.

[189]  H. Yoon, T.A. Dewers, Nanopore structures, statistically representative elementary volumes, and transport properties of chalk, Geophysical Research Letters. 40 (2013) 4294–4298. https://doi.org/10.1002/grl.50803.