Keathley Canyon 151 Sediment Cores


Publications

  1. Keathley Canyon 151 Sediment Cores>
    . Fracture-controlled gas hydrate systems in the northern Gulf of Mexico. Marine and Petroleum Geology. .
    Links

    Abstract — High-angle, open mode fractures control the presence of natural gas hydrate in water-saturated clays at the Keathley Canyon 151 site in the northern Gulf of Mexico, which was investigated for gas hydrates as part of the Chevron Joint Industry Project drilling in 2005. We analyze logging-while-drilling resistivity images and infer that gas hydrate accumulated in situ in two modes: filling fractures and saturating permeable beds. High-angle hydrate-filled fractures are the most common mode for gas hydrate occurrence at this site, with most of these fractures dipping at angles of more than 40° and occurring between 220 and 300 m below seafloor. These fractures all strike approximately N–S, which agrees with the 165°SE–345°NW maximum horizontal stress direction determined from borehole breakouts and which aligns with local bathymetric contours. In one interval of hydrate-filled fractures, porosity increases with increasing hydrate saturation. We suggest that high pore pressure may have dilated sediments during fracture formation, causing this increase in porosity. Furthermore, the formation of gas hydrate may have heaved fractures apart, also increasing the formation porosity in this interval.

  2. Keathley Canyon 151 Sediment Cores>
    . Physical properties of sediments from Keathley Canyon and Atwater Valley, JIP Gulf of Mexico gas hydrate drilling program. Marine and Petroleum Geology. .
    Links

    Abstract — Physical property measurements and consolidation behavior are different between sediments from Atwater Valley and Keathley Canyon in the northern Gulf of Mexico. Void ratio and bulk density of Atwater Valley sediment from a seafloor mound (holes ATM1 and ATM2) show little effective stress (or depth) dependence to 27 meters below seafloor (mbsf), perhaps owing to fluidized transport through the mound itself with subsequent settling onto the seafloor or mound flanks. Off-mound sediments (hole AT13-2) have bulk physical properties that are similar to mound sediments above 27 mbsf, but void ratio and porosity decrease below that depth. Properties of shallow (<50 mbsf) Keathley Canyon sediments (KC151-3) change with increasing effective stress (or depth) compared to Atwater Valley, but vary little below that depth. Organic carbon is present in concentrations between typical near-shore and deep-sea sediments. Organic carbon-to-nitrogen ratios suggest that the organic matter contained in Atwater Valley off-mound and mound sites came from somewhat different sources. The difference in organic carbon-to-nitrogen ratios between Atwater Valley and Keathley Canyon is more pronounced. At Keathley Canyon a more terrigenous source of the organic matter is indicated. Grain sizes are typically silty clay or clay within the two basins reflecting similar transport energy. However, the range in most shallow sediment properties is significantly different between the two basins. Bulk density profiles agree with logging results in Atwater Valley and Keathley Canyon. Agreement between lab-derived and logging-derived properties supports using logging data to constrain bulk physical properties where cores were not collected.

  3. Keathley Canyon 151 Sediment Cores>
    . Scientific results from Gulf of Mexico Gas Hydrates Joint Industry Project Leg 1 drilling: Introduction and overview. Marine and Petroleum Geology. .
    Links

    Abstract — The Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ∼392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor at the Keathley Canyon site. This paper provides an overview of the results of the initial phases of the JIP work and introduces the 15 papers that make up this special volume on the scientific results related to the 2005 logging and drilling expedition.